
www.manaraa.com

Exploiting an event-based infrastructure
to develop complex distributed systems

G. Cugola, E. Di Nitto, A. Fuggetta
CEFRIEL – Politecnico di Milano

Via Fucini, 2
20133 Milano Italy

 +39 2 239541
 e-mail: {cugola, dinitto, fuggetta}@elet.polimi.it

ABSTRACT

The development of complex distributed systems demands
for the creation of suitable architectural styles (or paradigms)
and related run-time infrastructures. An emerging style that
is receiving increasing attention is based on the notion of
event. In an event-based architecture, distributed software
components interact by generating and consuming events.
The occurrence of an event in a component (called source) is
asynchronously notified to any other component (called re-
cipient) that has declared some interest in it. This paradigm
holds the promise of supporting a flexible and effective in-
teraction among highly reconfigurable distributed software
components.

We have developed an object-oriented infrastructure, called
JEDI (Java Event-based Distributed Infrastructure), to sup-
port the development and operation of event-based systems.
During the past year, JEDI has been used to implement a
significant example of distributed system, namely, the OPSS
workflow management system.

The paper ill ustrates JEDI main features and how we have
used it to implement the OPSS workflow management sys-
tem. Moreover, it provides an initial evaluation of our expe-
riences in using an event-based architectural style.

Keywords

Event-based systems, distributed systems, workflow, busi-
ness processes, object-orientation.

1 INTRODUCTION
Convergence between telecommunication, broadcasting, and
computing is opening new opportunities and challenges for a
potentially large market of innovative network-wide services.

The class of users interested by this revolution is signifi-
cantly large: famili es, professionals, large organizations,
government agencies, and administrations. The services
range from home banking and electronic commerce, to coor-
dination and workflow support for large dispersed teams,
within the same company or even across multiple companies.

Many research and industrial activities are currently being
carried out to identify feasible strategies to develop and op-
erate these services in an effective and economically viable
way. The technical problems that have to be addressed are
complex and critical. Services must be able to operate on a
wide area network with acceptable performance. The soft-
ware technology used to implement these services must be
“ light” , i.e., it should be scalable with respect to the capabili -
ties of the platform on which services are running. Moreover,
the technology must enable a “plug and play” approach to
support dynamic reconfiguration and introduction of new
service components. Finally, it is essential to support open-
ness, since services have to be easily extended and integrated
with other services being offered on the network.

A very important research topic to be addressed to foster the
diffusion of network-wide applications is the identification of
proper architectural styles able to cope with the above re-
quirements and challenges. Most architectural styles exploit
Remote Procedure Call (RPC) to support communication
among distributed components. Middleware infrastructures
such as CORBA [10] and Java + RMI [15] are based on this
kind of communication model. RPC is based on a tight cou-
pling between the object that requests a service (i.e., the cli -
ent) and the object that satisfies such request (i.e., the server).
Before invoking a service, the client has to know the exis-
tence of a server capable of satisfying its request and has to
obtain a reference to such server. In many situations, how-
ever, a decoupled communication model between objects
would be preferable. As an example, let us consider a net-
work management system. In this system, whenever a net-
work node signals a failure, a procedure has to be started to
fix the failure. Each node does not necessarily need to know
the existence of such recovery procedure. It has simply to
notify the “external world” of the detected failure. This kind



www.manaraa.com

of scenarios is not easy to develop using the communication
model implemented by CORBA and Java+RMI.

An appropriate paradigm to address the above issue is pro-
posed by event-based architectures. The components of an
event-based architecture cooperate by sending and receiving
events, a particular form of messages. The sender delivers an
event to an event dispatcher. The event dispatcher is in
charge of distributing the event to all the components that
have declared their interest in receiving it. Thus, the event
dispatcher allows decoupling between the sources and the
recipients of an event.

The relevance and potential impact of the event-based para-
digm has been acknowledged by OMG that has recently de-
fined an event service on top of the CORBA framework (see
Section Related work).  Nonetheless, there are several open
issues that need to be addressed to define effective and work-
able event-based infrastructures. As a contribution to this
research work, we have developed an event-based, object-
oriented infrastructure called JEDI (Java Event-based Dis-
tributed Infrastructure). JEDI has been used to implement a
network-wide Process Support System (PSS) called OPSS
(ORCHESTRA Process Support System).1 A PSS [2] is an
environment for developing and executing process-based (or
also workflow-based) applications. A process-based applica-
tion is a software system supporting a coordinated set of ac-
tivities involving both humans and computerized tools. Typi-
cal examples, are business services such as customer care or
interoffice procedures.

The contributions of the paper can be summarized as fol-
lows:

• It introduces JEDI, a new event-based infrastructure
suitable to develop a wide range of distributed systems.

• It ill ustrates how we have exploited JEDI to develop
OPSS, and discusses the advantages derived from the
adoption of an event-based approach.

• It presents our experiences in using the event-based
paradigm.

Consistently, the paper has the following structure: "Section
A quick tour of JEDI" presents JEDI basic concepts and im-
plementation; Section "OPSS: ORCHESTRA " provides an
overview of the architecture of OPSS; Section "Evaluation"
provides an evaluation of our experience; Section "Related
work" presents the related works; finally, Section
"Conclusion" draws the conclusions.

2 A QUICK TOUR OF JEDI

2.1 The architecture of JEDI
Figure 1 describes the architecture of JEDI. The infrastruc-

                                                          
1 OPSS has been developed as part of the ORCHESTRA
project 9, funded by Telecom Italia.

ture is based on the notion of active object2 (AO). An AO is
an autonomous entity that performs an application-specific
task. An AO interacts with other AOs by producing and con-
suming events. Events are a particular type of message. Con-
ventional messages are sent from a source to one or more
recipients, as specified by the source itself. Conversely,
events do not include any information about their recipients.
An event is generated by an AO and notified to other AOs
(event recipients) that are dynamically selected by a specific
component of the infrastructure called event dispatcher (ED).
ED waits for the occurrence of an event, and delivers it to
those AOs that have explicitly declared their interest in re-
ceiving it. An AO declares the classes of events it is inter-
ested in by invoking an event subscription operation. It can
also stop accepting events of a given class by invoking the
unsubscribe operation. Event subscription and un-
subscription can be invoked at any time during the active
object li fetime. The notification of events is accomplished
asynchronously with respect to their generation.

Event Dispatcher

AO AO AO

AO AO

= event

Figure 1: A logical view of JEDI architecture.

In JEDI, an event is an ordered set of strings. The first string
is the event name. The remaining strings are event parame-
ters. In the paper, an event will be represented using a nota-
tion similar to function calls in traditional programming lan-
guages (e.g., open(foo.c,read), where open is the
name of the event, and foo.c and read are its parame-
ters). We have chosen this simple event structure for the sake
of flexibili ty and interoperabili ty. By exploiting the dynamic
binding and type checking features offered by Java we could
have defined events as Java objects, thus significantly en-
riching their semantics. However, this choice would have
introduced several constraints on the network-wide avail -
abili ty of the system.

AOs can either subscribe to a specific event or to an event
pattern. An event pattern is an ordered set of strings repre-
senting a very simple form of regular expression. The first
string of the pattern (i.e., the pattern name) may end with an
asterisk, while the other strings are either standard strings or
strings composed of the single character ‘_’ . Given a pattern
p, an event e matches the pattern iff the following conditions
                                                          
2 We have not used the term “component” since it is heavily
overloaded and could have induced some confusion.



www.manaraa.com

hold:

• The name of e is equal to the name of p, if the latter
does not contain the asterisk; or the name of e starts
with the same characters of p name, excluding the as-
terisk.

• e and p have the same number of parameters.

• Each parameter of pattern p that is not equal to ‘_’ , is
equal to the corresponding parameter of event e.

According to our experience, active objects often operate
according to a quite standard sequence of operations. Upon
activation, the AO subscribes to a set of events and then
starts waiting for their occurrence. When an event is notified,
the AO performs some operation (possibly generating new
events) and then starts waiting again. It therefore executes a
standard loop: wait for any event among those it has sub-
scribed to, and then process it. For this reason, we have in-
troduced a particular type of active objects called reactive
objects. A reactive object exhibits an abstract method (called
processMessage) that has to be specified by the pro-
grammer and that is automatically invoked each time the
reactive object receives an event it has subscribed to. JEDI
provides classes to implement both generic active objects and
reactive objects (see next section).

Reactive objects offer also a mechanism to support mobili ty.
A reactive object can autonomously decide to move to a dif-
ferent site by invoking the move operation, which causes the
following actions to occur:

1. The state of the reactive object is serialized and saved
using standard Java faciliti es.

2. The reactive object moves to the new location and in-
forms the ED that it is ready to receive events.

3. The ED keeps the events that should be received by the
migrating reactive object until it i s ready to receive
them.

There are two versions of the ED that exploit different im-
plementation strategies: centralized and hierarchical. In the
centralized approach, the ED is constituted by a single proc-
ess. The hierarchical approach has been introduced to address
the issue of scalabili ty at a network-wide level. In many
critical applications (e.g., network management), the number
of AOs is very high and they are typically dispersed on a
large number of hosts. Moreover, the number of events to be
dispatched becomes extremely large. In this context it is vital
to identify means to reduce the event traffic and optimize the
performance of the distribution mechanism. To address this
issue, the hierarchical ED has been structured as a collection
of processes (usually, one for each machine running JEDI)
interconnected to form a tree. Each AO connects to anyone
of these processes. Events are propagated across the ED pro-
cess tree on the basis of the subscriptions posted by each AO.
Notice that AOs behavior is not influenced by the imple-

mentation strategy chosen for the ED. The decision of ex-
ploiting the centralized or the hierarchical version only af-
fects the overall performance of the system. We do not pro-
vide here further details on this issue since it is not the main
focus of the paper.

In summary, the event-based communication style used in
JEDI is characterized by the following properties:

• it is asynchronous;

• it is based on multicast;

• the source of a communication cannot specify the desti-
nation of the communication;

• the destination of a communication does not necessarily
know the identity of the source;

• events are guaranteed to be received in the same se-
quence in which they are produced;

• a reactive object can move without loosing the occur-
rences of the events it has subscribed to.

2.2 The implementation of JEDI
JEDI has been implemented as a set of Java classes and sup-
ports the development of pure event-based applications (i.e.,
applications that communicate only by exchanging events).
JEDI includes the event dispatcher and the components
needed to develop active and reactive objects. These compo-
nents have to be properly tailored according to the specific
requirements of the system to be implemented. JEDI includes
two Java packages. Package polimi.jedi contains all the
classes needed to implement active objects. Package
polimi.jedi.dispatcher, includes the classes that
implement the event dispatcher. Figure 2 and Figure 3 de-
scribe the UML logical design of the two packages.

Each active object communicates with the event dispatcher
through the methods offered by the interface Connection-
ToED shown in Figure 2. This interface includes all the op-
erations needed to produce events, receive event notifica-
tions, subscribe to and unsubscribe from events. The infra-
structure provides two implementations for this interface,
through classes RMIConnectionToED and SocketCon-
nectionToED. The former uses RMI to connect to the
event dispatcher (i.e., to implement the relationship con-
nectedTo), while the latter uses standard TCP/IP sockets.

JEDI provides an abstract class ReactiveObject to im-
plement reactive objects. Users may easily implement new
reactive objects by creating subclasses of ReactiveOb-
ject. These subclasses have to provide a suitable imple-
mentation for the abstract method processMessage.

Figure 3 ill ustrates the Java classes used to implement the
event dispatcher (package polimi.jedi.dispat-
cher). The event dispatcher supports connections based
both on RMI and on standard TCP/IP sockets. TCP/IP con-
nections allow non-Java active objects to exploit the features



www.manaraa.com

of the JEDI event dispatcher. Classes EventQueue and
Register store the queue of events that have been received
and not yet dispatched, and the received event subscriptions
respectively.

EventDispatcher

(from polimi.jedi.dispatcher)

<<interface>>

ReactiveObject
<<abstract>>

RMIConnectionToED

*

uses

EventQueue
receivedEvents

SocketConnectionToED

ConnectionToED
<<interface>>

*

connectedTo

Figure 2: Packagem polimi.jedi.

EventDispatcher
<<interface>>

RMIBasedED

EventQueue

(from polimi.jedi)
Register

SocketBasedED

Figure 3: Dispatcher (package polimi.jedi.dispatcher).

3 OPSS: ORCHESTRA PSS
ORCHESTRA is a multimedia, distributed infrastructure
offering a range of advanced telecommunication features [9].
In particular, it allows users to transparently access services
from several types of terminals. It also supports nomadism:
users can access the ORCHESTRA environment without
being constrained by their physical location. Moreover,
services can be distributed/replicated across the network,
depending on load balancing needs. OPSS has been con-
ceived to support the design and operation of business serv-
ices on top of the ORCHESTRA infrastructure. To address
these requirements we decided to exploit the JEDI event-
based approach. In this section we present the main charac-
teristics of OPSS and how it has been implemented on top of
JEDI.

3.1 The Architecture of OPSS
OPSS main components are a set of agents and a State

Server (see Figure 4).

3.1.1 Agents

Agents are autonomous entities able to receive an activity
description (i.e., a process model fragment) and execute it.
Activities are specified in any language that can be under-
stood by the agents that execute them. Agents can be dy-
namically instantiated during the execution of the process.
We use event distribution as the key mechanism to support
agent interoperation. Events can be used to notify a variety of
situations, e.g., the start up and the termination of an activity
or the creation of a new artifact. The exploitation of the event
mechanism makes it possible to achieve two important re-
sults. First, agents can be dynamically and seamlessly
plugged in and out of OPSS. In particular, the creation or
removal of agents does not affect (at least directly) other
agents. Second, event notification defines a standard interop-
eration mechanism that is independent of the language inter-
preted by the agents.

Event Dispatcher

SoftwareAgent

Activity
Description

ToolAgenda
State

Server

Figure 4: The ORCHESTRA Process Support System.

OPSS offers three kinds of agents: external tools, software
agents, and human agents. External tools are (possibly off -
the-shelf) components that execute business-specific activi-
ties (e.g., a configuration management tool). The activity
description for an external tool is just the set of information
needed to launch the tool (e.g., the initial parameters). Exter-
nal tools can be either OPSS-dedicated or off- the-shelf tools.
The latter have to be interfaced with OPSS through a gate-
way. JEDI class ConnectionToED supports the program-
mer in the implementation of tools and gateways. Software
agents are general-purpose interpreters of automated activi-
ties. In the current implementation of OPSS, activity de-
scriptions for software agents are coded in Java. They are
defined as sub-classes of ReactiveObject. Human
agents are people executing creative, human-specific activi-
ties (e.g., a customer service operator). Human agents are
supported by an Agenda that show their assignments and
responsibiliti es in the process. Agenda has been explicitly
developed for OPSS and uses RMIConnectionToED
services to send and receive event notifications.

3.1.2 State Server

The State Server is in charge of coordinating agents by of-
fering a logicall y centralized view of the state of the process.
The state of the process is defined by the entities shown in
Figure 5. Each entity has associated a set of possible states
that define its behavior:



www.manaraa.com

• AgentInfo. This class is used to store information on
process agents. The modeled agents' states are Avail-
able and NotAvailable. In the first state the agent
can be requested to execute an activity.

• ActivityInfo. This class is used to maintain infor-
mation on the activities of the process. An activity can
be in one of the following states: Defined, As-
signed, OnGoing, Suspended, Terminated,
Aborted. These states will be presented more in detail
later on.

• ArtifactInfo. This class defines the information
concerning the outcomes of the process. The possible
states are Created, OnEdit, Edited, and De-
stroyed.

• ResourceInfo. This class contains data on the tools
that can be invoked or used by OPSS (e.g., the executa-
ble code of the Java interpreter or of an external tool,
devices such as a printer or an audio device). The possi-
ble states are Available and NotAvailable.

These entities are subclasses of ProcessElement (see
Figure 5). In turn, ProcessElement is a subclass of Re-
activeObject. As a consequence, each instance of these
subclasses has an autonomous thread of execution that reacts
to JEDI events.

ArtifactInfo

Agent In fo

ResourceInfo

HumanAgent In fo Sof twareAgent In fo

StateServerRMI

StateServerRMI_Impl

1. .1

1..1

React iveObject

0..*1. .1

1..1

1..1

0..*1. .1

ActivityInfo

<<inter face>>

ProcessElement

Tool Info Precedes

IsExecutedBy

Creates/
modif ies

Uses

Figure 5: StateServer structure.

Each entity reacts to events according to a finite state ma-
chine, defined at the class level, called life cycle. It defines
the set of admissible transitions between states. A transition
is defined by a triple: triggering event, condition, and action.
With this respect, transitions are similar to ECA rules in ac-
tive databases [6]. When an entity receives an event notifica-
tion Ei in state Sj, all the transitions having Sj as initial state
and Ei as triggering event are evaluated for firing. One of the
transitions whose condition evaluates to true is non-
deterministically fired. The firing of the transition causes the

execution of the action part and moves the instance to the
final state. The execution of the action part of a state transi-
tion can produce new events that may influence the execu-
tion of activity descriptions and the state of other objects in
the State Server.

De f i ned Ass igned

O n G o i n g

Terminated

Suspended

Abor ted

Ass ignAgent

StartActivi ty

Suspend

R e s u m e

Terminate

Abort
AbortAbort

Abort

Figure 6: The Activity life cycle.

As an example, Figure 6 shows the life cycle associated with
class ActivityInfo. When an object of this class is cre-
ated, it is in state Defined. In this state the object is char-
acterized by a unique identifier and by an activity descrip-
tion. From state Defined the object can move to state As-
signed when the corresponding activity description has
been assigned to an agent for execution (i.e., event Assig-
nAgent(activityID, agentID)  is received). The
transition can only be executed if the instance of class
AgentInfo that corresponds to the selected agent (agen-
tID) is in state Available. Upon transition execution, the
ActivityInfo instance moves into state Assigned, the
AgentInfo instance moves into state NotAvailable,
and the event AgentAssigned(activityID, agen-
tID) is produced. Agendas usuall y subscribe to these types
of events to provide human agents with information about
their assignments. When the ActivityInfo instance re-
ceives event StartActivity(activityID), it moves
from state Assigned to state OnGoing, provided that all
the activities preceding activity activityID have been
terminated. When executing the action part of this transition,
the ActivityInfo instance produces the event Activ-
ityStarted(activityID, AD-URL). This event is
subscribed by the agent assigned to activity activityID
or, if she is a human agent, by her Agenda, and triggers the
execution of the activity. Parameter AD-URL contains the
location of the activity description to be executed.

The State Server main class is StateServerRMI_Impl.
It defines the inherited method processMessage to react



www.manaraa.com

to events like: login of users and creation of new activities,
artifacts, or resources. The dynamic behavior of the State
Server is very simple: it subscribes to and waits for the above
events. When one of such events occurs (e.g., a new activity
needs to be started), the State Server creates an object able to
describe the state of the corresponding entity in the process
(i.e., the new activity) and to keep track of its evolution.
Therefore, at any time, the information stored in the State
Server mirror the state of the process being executed.

Beside this event-based interface, the State Server exports a
set of services through which any Java component can query
the state of the running process (i.e., of the instances of these
subclasses). These services constitute a synchronous interac-
tion mechanism that is not directly supported by JEDI. The
motivation of this choice is discussed later on in Section
“Evaluation” .

4 EVALUATION
The development of OPSS has demonstrated that the main
advantage of the event-based paradigm supported by JEDI is
the easy re-configurabili ty of the system. For instance, we
have recently integrated a process monitor in OPSS without
affecting the behavior of the other parts of the system. The
process monitor simply subscribes to the events that repre-
sent a change of the process state and visualizes it accord-
ingly. However, our experience has also identified some
problems and open issues, as we will briefly discuss hereaf-
ter.

4.1 Synchronous vs. asynchronous communication
In JEDI, active objects communicate using a pure event-
based style. Namely, the only mean for an active object to
send (receive) an information is to generate (receive) an
event. Events are sent and received in an asynchronous way.
We have noticed that in many situations an active object,
after generating an event, needs some response from the re-
cipient(s) of the event in order to perform the next operation.
For instance, consider the case in which an agent needs to
notify the State Server that a new activity has to be created
and that this activity has to be assigned to a certain agent.
The agent executes the following code fragment:

sendEvent("DefineActivity(ActID,ActType)");
sendEvent("AssignAgent(ActID,AgentID)");

The execution of this code might be erroneous because of
possible race conditions. For instance, the State Server, that
reacts to event DefineActivity, might be unable to cre-
ate the corresponding ActivityInfo object before the
event AssignAgent has been produced. As a result, this
last event would be lost since the ActivityInfo object
would be late in subscribing to it. In this case the State
Server would not be able to properly keep track of the agent
assignment.

To avoid this situation, it is convenient that the agent re-
ceives the confirmation of the creation of the Activity-

Info object before generating the next event. In JEDI, this
behavior can be obtained by programming the event recipient
to produce an event that acts as a “response” to the initial
event. This way, the source of the initial event can explicitly
subscribe to this event and wait for the event occurrence be-
fore producing the AssignAgent event. This solution is
quite cumbersome and expensive, since it requires the ex-
change of a high number of messages between the event
source, the recipient(s), and the event dispatcher.

An alternative solution would be to explicitly define in JEDI
the concept of “ return value”, from the event recipient(s)
back to the agent that has generated the event, and to provide
the programmers with mechanisms to easily manage these
values. In particular, we are introducing an additional syn-
chronous operation for event generation that requires a “re-
turn value” from the recipient(s) of the event. The execution
of this operation allows an active object to send an event to
the dispatcher and wait until some information is returned
from the event recipient(s) or, if no object is interested in the
event, from the event dispatcher. When the event has multi-
ple recipients, several policies can be envisaged to manage
the return values. For instance, the source can wait for the
first return value, or it can wait until all the recipients have
provided a response. In this latter case the event dispatcher
should inform the source of the number of return values that
it should receive.

Notice that this additional synchronous mechanism still pre-
serves the anonymity of the recipient(s) of the event, since
the exchange of return value can be still managed by the
event dispatcher. More in general, it preserves the basic se-
mantics of events (multicast dispatching, and anonymity of
both source and recipients), still introducing a significant
amount of flexibili ty and optimization in the management of
complex agent interaction patterns.

4.2 Event granularity
We have experienced a significant problem in identifying the
events to be exchanged among agents. If the granularity of
events is very low, many events have to be generated, since
each of them has a poor or limited meaning. This choice
might significantly complicate the programming activity,
reduce the performance of the system, and make it difficult
to test and monitor the system. On the other side, a too
course-grained definition of events might hide inside agents
significant operations that must be made visible to the rest of
the system. For instance, consider the example presented in
the previous section. In that case, the events CreateAc-
tivity and AssignAgent (that gave us several synchro-
nization troubles) could have been replaced by a unique
event carrying the information about both the creation of the
activity and its assignment to the specified agent. This design
choice reduces the number of exchanged events but modifies
the semantics of activities: any activity can be created only if
a proper executing agent has been already selected.



www.manaraa.com

There is no universal solution to this problem. It is the de-
signer’ s responsibility to evaluate the trade-off and select the
most suitable solution, based on the constraints and require-
ments of the problem being addressed.

4.3 Client server vs. event-based design paradigms
The main problem a programmer encounters using a pure
event-based approach is that the programming philosophy
differs from the traditional client-server approach that she is
used to. In a client-server approach interaction between com-
ponents occurs when one component is not able to perform
some operation and asks the other one to do it on its behalf.
In an event-based approach, components are autonomous
entities that inform the “external world” of the main changes
occurred in their internal state or in the state of the compo-
nents and devices they can observe. The notification of an
event is seen by a component as an external stimulus that can
determine a change in its internal state. Thus, collaboration
among components is indirect.

Based on this consideration, a main step in understanding
both architectural paradigms should be the identification of
the classes of systems that better suit each approach. Since
they address different requirements, we might discover that
event-based and client-server approaches are not alternative.
Instead, they can be profitably integrated even in the same
system. In OPSS we have tried to use the event-based ap-
proach to guarantee autonomy of process agents and re-
configuration of the system. Moreover, we exploited the cli -
ent-server approach to query the global state of the process
maintained by the State Server. We are aware, however, that
a more systematic study is needed.

4.4 Open issues: network-wide event distribution and
mobility

The development of OPSS has emphasized the need for
powerful and eff icient mechanisms to support the notifica-
tion and distribution of events on a network-wide scale (e.g.,
on the Internet). The event-based infrastructure must guar-
antee that the services implemented on top of it are made
available to users dispersed over the Internet. The hierarchi-
cal ED we implemented may represent an initial solution to
the problem. However, there are still a number of issues to be
addressed. In particular, a distributed ED provides an overall
performance improvement only if the number of messages
exchanged for each delivered event across the ED compo-
nents is "reasonable". According to our current experience,
several aspects have an impact on this issue, such as the to-
pology of the connections of ED components, and the ex-
pressive power provided by the subscription mechanism.
Colleagues at the University of Colorado at Boulder and UC
Irvine are addressing this issue by defining and assessing
new architectures for distributed EDs.

We argue that mobili ty of reactive objects as it is supported
by JEDI represents a powerful mechanism for implementing
sophisticated applications. However, it may introduce several

problems when combined with ED distribution. The ED has
to provide specific mechanisms to guarantee that moving
objects do not receive duplicated events and that the original
ordering of events is respected. We provided a specific solu-
tion for our hierarchical ED, but the impact of this issue on
alternative ED architectures is still t o be understood. Finally,
we still l ack an extensive experimentation of this mechanism
since it was not exploited in the OPSS implementation.

5 RELATED WORK
This section surveys event-based infrastructures and com-
pares them with JEDI. Also, it shows the impact that the
adoption of an event-based approach had on OPSS, by com-
paring our system with similar state-of-the-art PSSs.

5.1 Event-based infrastructures and frameworks
In the past years there has been a growing interest in distrib-
uted software architectures capable of easily supporting dy-
namic system reconfiguration. The event-based paradigm
provides a very promising solution to the problem. It breaks
the tight connection between clients and servers, eliminating
the need for clients to know the identity of servers. Several
examples of event-based systems may be found in literature.
They differ in the structure of the events that can be dis-
patched, the way events are observed, the mechanisms for
event subscription, and their overall run-time architecture
(see [13] for a detailed characterization of these aspects). In
general, the products and approaches we mention in this sec-
tion do not support the mobilit y of the software components
exchanging events.

Multicast RPC [3, 18, 19] (also known as group RPC) allows
a client to invoke a service on a group of servers which ex-
ports the same interface. Servers “register” to a class of mes-
sages (service requests) by joining a group and by exporting
the common interface defined for the group. This is quite
different from the approach taken by JEDI. In JEDI event
consumers use a more powerful declarative approach to
“register” to a class of messages and they do not need to ex-
port any common interface. Moreover, multicast RPC is a
synchronous communication mechanism in which an answer
is required, while JEDI implements an asynchronous com-
munication mechanism without answer. From this viewpoint,
multicast RPC is complementary to the JEDI approach, and
could be similar to the synchronous mechanism we advo-
cated in Section Evaluation.

Linda [5] is the precursor of a generation of languages aim-
ing at describing and supporting cooperative computations.
The basic idea is that different autonomous computations can
cooperate by reading and writing information through a
shared repository (or space) of information tuples. Each
Linda program can read a tuple from the repository on the
basis of its contents, using a pattern matching mechanism. A
read operation does not remove the tuple from the repository.
Linda offers also a consume operation that reads the tuple
and remove it from repository. There are several differencies



www.manaraa.com

between Linda and JEDI (and, in general, the event-based
paradigm). First, JEDI makes it possible to “declare”,
through the subscribe operation, the class of events which an
application is interested in. As a consequence, the application
will receive all the events that conform with the subscribe
declaration. It does not need to explicitly request them fur-
ther. Events are distributed by the ED to the application as
they are produced and asynchronously with respect to the
main control flow of the application. Conversely, in Linda
each read/consume operation is independent of each other
and is synchronously executed by the Linda program. Sec-
ond, JEDI (as any other true event-based approach) guaran-
tees that all the parties that have declared their interest in an
event will eventually receive it. This is enforced by the JEDI
run-time support based on subscription requests. In Linda the
only way to achieve a similar effect is to work at the applica-
tion level. For instance, before removing the tuple, a Linda
program might check for some global information to be sure
that all the other interested parties have already read it. An-
other possibili ty is that each event producer writes multiple
copies of a tuple, one for each interested party. This means
that the producer must know the number of interested parties.
In both cases, the correctness of the event distribution se-
mantics is left to the programmer’s responsibil ity.

Event-based systems can be considered as an evolution of a
well-established class of products often called MOMs (Mes-
sage-Oriented Middleware) [11]. In MOMs, explicit message
queues are used to distribute messages. They guarantee de-
livery of messages and location transparency. In several
MOMs, there can be multiple consumers for the same mes-
sage queue. A queue is therefore similar to a Linda tuple
space. We argue that MOMs exhibit the same problem of
Linda. In fact, even if a MOM made it possible to just “ read”
a message from the queue without removing it, this would be
a decision left to the consumer. It can’ t be guaranteed that the
event is delivered to all the interested parties.

Tooltalk [14] is a product derived from FIELD [12] that was
originally conceived to support tool integration in software
engineering environment through a message exchange facil -
ity. Tools can subscribe to events, send events, and receive
the events they have subscribed to. Events in Tooltalk can
either be asynchronous or synchronous (they are called noti-
fications and requests respectively). In the latter case, the
recipients are supposed to provide the source with a return
value. This approach is similar to the one we are developing
for JEDI (see Section Synchronous vs. asynchronous com-
munication). The publish/subscribe semantics implemented
by ToolTalk is typically oriented to support tool integration
in a CASE environment and is insufficient in other applica-
tion domain. In particular, Tooltalk offers two event visibil ity
levels: session and file. A session is defined as the set of all
tools served by the same Tooltalk server. Usually, each user
launches one or more Tooltalk servers, each of them control-
ling a separate group of tools. A program can subscribe to all
the messages belonging to a session and/or related to a file.

This mechanism makes it impossible a wide application of
the approach. For instance, it is not possible to develop a
monitor tool that subscribes to the events related to all files.

The CORBA event service [10] defines two roles for system
components: event supplier and event consumer. They are
described by two different IDL interfaces that provide meth-
ods to exchange events between event suppliers and consum-
ers. The structure of a CORBA event is hidden to the event
service. Events are distributed from suppliers to consumers
through event channels. An event channel allows multiple
suppliers to communicate with multiple consumers asyn-
chronously. An event-based system may include several
event channels. A component of the system (either supplier
or consumer) may be connected to several event channels.

The CORBA event service differs from JEDI significantly.
A CORBA event is distributed on the basis of just one (im-
plicit) attribute: the name of the event channel where the
event was originally posted. The event will be dispatched to
all the consumers attached to that channel. The contents of
the event is “not visible” to the event channel, and is not used
to manage the distribution of the event. Conversely, a JEDI
event is composed of a set of attributes. Producers do not see
different channels. They simple post these structured events
to the ED. Consumers can flexibly subscribe with a single
“declarative” operation to a class of events that is dynami-
cally defined using event patterns. Consequently, the expres-
sive power of JEDI is higher than CORBA. CORBA event
channels can be easily simulated using JEDI event names,
while it is quite cumbersome and inefficient to simulate JEDI
patterns in CORBA. It is indeed necessary to write a specific
code that in general will need to poll different CORBA event
channels. In general, if the JEDI pattern includes a selection
criterion that involves event attributes other than the event
name, the equivalent CORBA consumer must be “pro-
grammed” to perform the selection of desired events based
on the analysis of the event contents. This means that while
the JEDI ED can avoid dispatching events that do not match
the selection criterion, the equivalent CORBA consumer re-
ceives and discards a number of undesired events, with an
increase of the event traffic.

TIBCO is an infrastructure for creating and maintaining large
distributed and event-based applications [17]. It has been
used over the past years to integrate financial and banking
applications (especially, trading services for financial mar-
kets). It offers several interesting features including reliable
and scalable distribution of events. It exploits a three-level
hierarchical event dispatcher. From the available documenta-
tion it seems that TIBCO offers an event structure that is
similar to the one offered by CORBA, i.e., a labeling mecha-
nism to assign names to events. Therefore it seems it lacks
the abili ty of defining event patterns as in JEDI.

C2 is an event-based architectural style that has been de-
signed to support the development of GUI software [16]. In
C2 multiple software components can communicate through



www.manaraa.com

connectors that manage the routing and broadcasting of
events. Components and connectors form a DAG (Direct
Acyclic Graph). In this DAG, each component can commu-
nicate only with the two connectors “below” or “above” it.
Events are classified as notifications and requests, depending
on the fact that they travel down or up in the DAG, respec-
tively. There are several differences between C2 and JEDI. In
C2 the component developer does not have any event defini-
tion and generation primitive. Actually, C2 notifications are
messages automatically sent out by the C2 run-time support
to notify the execution of a component method invocation. It
is not possible for the component developer to define and
generate events with a different semantics. Moreover, C2
requests (i.e., synchronous communications) are not anony-
mous and are not multicasted. In JEDI, we do propose the
introduction of a synchronous mechanism (the return re-
ceipt), but we preserve the anonymity of senders and receiv-
ers and the possibili ty of multicasting the event.

Yeast main component is a centralized server that observes
event sequences and reacts to their occurrence according to
some action specification [8]. Users can add new event-
action specifications while Yeast is running. Events can be
either operating system events (e.g., file changes) or mes-
sages produced by the components of the system. Events can
be combined in a sequence using some logical and temporal
operators. Actions can include any command that can be
executed by the computer command interpreter. Yeast and
JEDI are quite different and complementary. The former
does not offer any event dispatching functionali ty, but pro-
vides sophisticated mechanisms for defining, observing event
sequences, and reacting to their occurrence. Thus, Yeast
functionali ty can be easily implemented on top of JEDI as a
proper active object.

5.2 PSSs
It is worthwhile to compare OPSS with the state-of the-art in
PSSs, to better appreciate the impact that the adoption of
JEDI has had on its development and on its range of features
and functionali ties.

A first relevant system is ProcessWall [7]. It is a process
state server providing storage for process state, and opera-
tions for defining and manipulating the structure of the state.
The applications that actually execute the process operate as
ProcessWall clients. They execute the process activities and
invoke the ProcessWall operations to modify the state of the
process in order to reflect the result of their processing. An
event dispatching system is used to notify the interested cli -
ents of changes occurred in the state of the process. Proc-
essWall i s similar to the OPSS State Server. The main differ-
ence is that ProcessWall uses the event-based communica-
tion model only to notify state changes to its clients. The
clients communicate with ProcessWall via RPC. Conversely,
the OPSS State Server supports both RPC and event-based
interaction.

Another PSS that presents characteristics similar to OPSS is
Endevours [4]. It has been developed to support distribution
of process execution, lightweight installation and re-
configuration, and easy integration of components executing
process fragments with tools and hyperwebs of artifacts. Its
architecture is composed of three main levels: the user level,
that is in charge of managing the interaction with users, the
system level that defines the main process abstractions (e.g.,
activities, artifacts, …), and the foundation level that man-
ages object persistency and distribution. Both Endevours and
OPSS provide a decentralized execution of processes, i.e.,
they exploit multiple process engines. The main difference is
that Endevours does not rely on the event-based approach to
coordinate the interaction of different engines: they interact
by sharing the artifacts and information stored in a passive
repository.

The definition of the information stored in the OPSS State
Server has been inspired by the work presented in [1]. In that
paper a CORBA-based PSS is described. It is connected to
other tools through the CORBA ORB. The PSS manages
activities, artifacts, resources, and agents. They are associ-
ated with a life cycle. A state transition defined in the life
cycle of an object is executed if the corresponding event oc-
curs. From the available publications, we have been unable
to understand the mechanisms used at run-time to manage
event creation and notification. Therefore, it has been impos-
sible to carry out a detailed comparison of the architectures
of the two approaches.

6 CONCLUSION
In this paper we have il lustrated the main features of JEDI,
an event-based infrastructure for the development of complex
distributed systems. JEDI exploits the notion of event and
standard Internet technology to provide the software devel-
oper with a programming framework where multiple active
objects cooperate by generating and consuming events. JEDI
has been used to implement a significant example of distrib-
uted system, namely the OPSS Process Support System.
JEDI offers a simple set of mechanisms to create multiple
active objects that interoperate by exchanging events. The
entire architecture is based on very simple and orthogonal
concepts. Events are asynchronously distributed to subscrib-
ers. All the operations related to event subscription and event
notification are managed in a highly dynamic and flexible
way. OPSS is a significant example of distributed system
whose development has greatly benefited from the availabil -
ity of an event-based infrastructure. By exploiting JEDI fea-
tures, OPSS can offer an extremely flexible and dynamically
changeable support for workflow management.

The main lessons we have learned from the work described
in this paper indicate that the event-based approach certainly
offers significant advantages over traditional RPC and con-
ventional message-based communication techniques. These
advantages are also demonstrated by the growing interest in
this technology that has been demonstrated by both academia



www.manaraa.com

and industry. Nevertheless, a number of technological issues
concerning event-based architectures have to be explored. In
this respect, we argue that the most critical issue to be ad-
dressed is the identification of appropriate design and im-
plementation strategies that make it possible to integrate dif-
ferent (and sometime conflicting) features such as Internet-
wide scalability, enhanced event model (e.g., object-
oriented), synchronous and asynchronous event handling
mechanisms, event filtering. Moreover, we still miss effec-
tive methodological guidelines to guide and support the de-
sign of event-based systems. We plan to further investigate
these issues since they are critical impediments to the effec-
tive exploitation of the event-based architectural style.

ACKNOWLEDGEMENTS

Authors wishes to thank Antonio Carzaniga, Carlo Ghezzi,
Dennis Heimbigner, David Rosemblum, and Alex Wolf for
their important contribution to the accomplishment of the
work described in this paper. They wish also to thank S.
Beretta, C. Colombo, S. Montaruli , S. Sargenti, and F.
Vadalà who provided an essential support in the development
and implementation of JEDI and OPSS.

OPSS development has been funded by Telecom Italia under
a contract managed by Armando Limongiello. The views and
the conclusions contained in this document are those of the
authors and should not be interpreted as representing the of-
ficial policies, either expressed or implied, of Telecom Italia.

REFERENCES

1. K. Alho, C. Lassenius, and R.Sulonen, “Process Enact-
ment Support in a Distributed Environment” , WET ICE
'95, IEEE Fourth Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises, Berkeley
Springs, West Virginia, April 20-22, 1995.

2. V. Ambriola, R. Conradi, and A. Fuggetta. “Assessing
Process-Centered Environments” , ACM Transactions on
Software Engineering and Methodology, vol. 6, no. 3,
July 1997.

3. K. P. Birman and T. A. Joseph, “Reliable Communica-
tion in Presence of Failures” , ACM Transactions on
Computer Systems, 5(1), February 1987.

4. G.A. Bolcer and R.N. Taylor, “Endevours: A Process
System Integration Infrastructure”, IRUS Conference on
Software Process Improvement, Practice and Experi-
ence, January 24, 1997, Irvine, CA.

5. N. Carriero and D. Gelernter, “Linda in Context” , Com-
munication of ACM, 32, 4, April 1989.

6. P. Fraternali and L. Tanca, “A structured approach for
the definition of the semantics of the active databases,
ACM Transactions on Database Systems, 1995.

7. D. Heimbigner, “The ProcessWall: A Process Server
Approach to Process Programming” , Fifth

ACM/SIGSOFT Conference on Software Development
Environments, 9-11 December 1992, Washington, D.C.

8. B. Krishnamurthy and D.S. Rosemblum, “Yeast: A Gen-
eral Purpose Event-Action System”, IEEE Transactions
on Software Engineering, vol. 21, no. 10, October 1995.

9. A. Limongiello, R. Melen, M. Roccuzzo, V. Trecordi, J.
Wojtowicz, “An Experimental Open Architecture to
Support Multimedia Services Based on CORBA, Java
and WWW Technologies” , IS&N '97, Cernobbio
(Como), Italy, 27-29 May 1997.

10. Object Management Group, “CORBAservices: Common
Object Services Specification” , July 1997,
ftp://ftp.omg.org/pub/docs/formal/97-07-04.pdf

11. OVUM, “OVUM Evaluates: Middleware” , OVUM Ltd,
1996.

12. S.P. Reiss, “Connecting Tools Using Message Passing in
the Field Environment” , IEEE Software, July 1990.

13. D.S. Rosenblum and A.L. Wolf, “A Design Framework
for Internet-Scale Event Observation and Notification” ,
6th European Software Engineering Conference (Joint
with SIGSOFT '98, Foundations of Software Engineer-
ing), Zurich, Switzerland, September 1997, to appear.

14. Sun Microsystems, “ Integrating applications with the
SPARCworks 3.0.1 toolset.
http://www.sun.com/software/Products/Developer-
products/literature/int_tool/preface.html

15. Sun Microsystems, “Java Remote Method Invocation
Specification” , February 10, 1997,
ftp://ftp.javasoft.com/docs/jdk1.1/rmi-spec.pdf

16. R.N. Taylor, N. Medvidovic, K.M. Anderson,
E.J.Whitehead Jr., J.E. Robbins, K.A. Nies, P. Oreizy,
and D.L. Dubrow. A component-based architectural
style for GUI software, IEEE Transactions on Software
Engineering, vol. 22, no. 6, June 1996.

17. TIBCO Enterprise Toolkit White Paper.
http://www.tibco.com/products/etkwhite.hml

18. K. S. Yap, P. Tripathi, and S. Tripathi, “Fault Tolerant
Remote Procedure Call ” , Proceedings of 8th Interna-
tional Conference on Distributed Computing System,
June 1988.

19. X. Wang, H. Zhao, and J. Zhu, “GRPC: A Communica-
tion Cooperation Mechanism in Distributed Systems” ,
ACM Operating System Review, 27(3), 1993.


