Exploiting an event-based infrastructure
to develop complex distributed systems

G. Cugola, E. Di Nitto, A. Fuggetta
CEFRIEL — Politemico d Milano
ViaFucini, 2
20133MilanoItay

+39 2 239541

e-mail :

ABSTRACT

The development of complex distributed systems demands
for the aedion of suitable achitedura styles (or paradigms)
and related run-time infrastructures. An emerging style that
is recaving increasing attention is based on the notion of
event. In an event-based architecture, distributed software
components interadt by generating and consuming events.
The occurrence of an event in a component (cdled source) is
asynchronously notified to any other component (cdled re-
cipient) that has dedared some interest in it. This paradigm
holds the promise of supparting a flexible and effedive in-
teradion among highly reconfigurable distributed software
components.

We have developed an objed-oriented infrastructure, cdled
JEDI (Java Event-based Distributed Infrastructure), to sup-
port the development and operation of event-based systems.
During the past yea, JEDI has been used to implement a
significant example of distributed system, namely, the OPSS
workflow management system.

The paper ill ustrates JEDI main feaures and how we have
used it to implement the OPSS workflow management sys-
tem. Moreover, it provides an initial evaluation of our expe-
riencesin using an event-based architecural style.

Keywords

Event-based systems, distributed systems, workflow, bus-
ness processes, objed-orientation.
1 INTRODUCTION

Convergence between telecommunicaion, broadcasting, and
computing is opening rew oppatunities and challenges for a
potentially large market of innovative network-wide services.

{cugol a, dinitto,

fuggettal@let.polim.it

The dass of users interested by this revolution is dgnifi-
cantly large: families, professionals, large organizaions,
government agencies, and administrations. The services
range from home banking and eledronic commerce, to coar-
dination and workflow suppat for large dispersed teams,
within the same company or even aaoss multiple companies.

Many reseach and industrial adivities are arrently being
caried out to identify feasible strategies to develop and -
erate these services in an effedive and economicdly viable
way. The technicd problems that have to be addressed are
complex and criticd. Services must be ale to operate on a
wide aea network with acceptable performance The soft-
ware technology used to implement these services must be
“light”, i.e., it should be scdable with resped to the capabili -
ties of the platform on which services are running. Moreover,
the technology must enable a“plug and play” approac to
suppat dynamic reconfiguration and introduction of new
service @mponents. Finaly, it is esential to suppat open-
ness, since services have to be eaily extended and integrated
with other services being offered on the network.

A very important reseach topic to be aldressed to foster the
diffusion of network-wide gplicationsisthe identification of
proper architedural styles able to cope with the éove re-
quirements and challenges. Most architedural styles exploit
Remote Procedure Call (RPC) to suppat communicaion
among distributed components. Middleware infrastructures
such as CORBA [10] and Java + RMI [15] are based on this
kind of communication model. RPC is based on a tight cou-
pling between the objed that requests a service (i.e., the di-
ent) and the objed that satisfies such request (i.e., the server).
Before invoking a service, the dient has to know the exis-
tence of a server cgpable of satisfying its request and has to
obtain a reference to such server. In many situations, how-
ever, a demupled communication model between objeds
would be preferable. As an example, let us consider a net-
work management system. In this system, whenever a net-
work node signals a failure, a procedure has to be started to
fix the failure. Each node does not necessarily need to know
the existence of such rewvery procedure. It has smply to
notify the “external world” of the deteded failure. This kind

www.manaraa.com



of scenarios is not easy to develop using the communicaion
model implemented by CORBA and Javat+RMI.

An appropriate paradigm to addressthe éove issue is pro-
posed by event-based architedures. The cmponents of an
event-based architedure woperate by sending and receving
events, a particular form of messages. The sender delivers an
event to an event dispatcher. The event dispatcher is in
charge of distributing the event to al the mmponents that
have dedared their interest in recaving it. Thus, the event
dispatcher allows decoupling between the sources and the
redpients of an event.

The relevance and pdential impad of the event-based para-
digm has been acknowledged by OMG that has recently de-
fined an event serviceon top o the CORBA framework (see
Sedion Related work). Nonetheless there ae several open
issues that need to be aldressed to define dfedive and work-
able event-based infrastructures. As a @ntribution to this
reseach work, we have developed an event-based, objed-
oriented infrastructure cdled JEDI (Java Event-based Dis-
tributed Infrastructure). JEDI has been used to implement a
network-wide Process Suppat System (PSS cdled OPSS
(ORCHESTRA Process Suppart System).> A PSS[2] is an
environment for developing and executing process-based (or
also workflow-based) applicaions. A processbased applica
tion is a software system supparting a coordinated set of ac-
tivities involving bah humans and computerized toadls. Typi-
cd examples, are business ®rvices such as customer care or
interoffice procedures.

The ontributions of the paper can be summarized as fol-
lows:

e |t introduces JEDI, a new event-based infrastructure
suitable to develop a wide range of distributed systems.

e It illustrates how we have exploited JEDI to develop
OPSS and discusses the alvantages derived from the
adoption of an event-based approach.

e It presents our experiences in using the event-based
paradigm.

Consistently, the paper has the following structure: "Sedion
A quick tour of JEDI" presents JEDI basic concepts and im-
plementation; Section "OPSS ORCHESTRA " provides an
overview of the achitedure of OPSS; Sedion "Evaluation"
provides an evaluation of our experience Sedion "Related
work" presents the related works;, finally, Sedion
"Conclusion" draws the aonclusions.

2  AQUICK TOUR OF JEDI

2.1  Thearchitecture of JEDI
Figure 1 describes the achitedure of JEDI. The infrastruc-

! OPSS has been developed as part of the ORCHESTRA
projed 9, funded by Telecom Italia

ture is based on the notion of active objed?® (AO). An AO is
an autonomous entity that performs an applicaion-specific
task. An AO interads with other AOs by producing and con-
suming events. Events are aparticular type of message. Con-
ventional messages are sent from a source to one or more
redpients, as gedfied by the source itself. Conversely,
events do not include any information about their redpients.
An event is generated by an AO and natified to ather AOs
(event redpients) that are dynamicdly seleded by a spedfic
component of the infrastructure cdled event dispatcher (ED).
ED waits for the occurrence of an event, and delivers it to
those AOs that have explicitly dedared their interest in re-
ceving it. An AO dedares the dasss of events it is inter-
ested in by invoking an event subscription operation. It can
also stop accepting events of a given class by invoking the
unsubscribe operation. Event subscription and un
subscription can be invoked at any time during the adive
objed lifetime. The notification of events is accomplished
asynchronously with resped to their generation.

i

| Event  Dispatcher
1) {
AO AO AO
{ = event

Figure 1: A logical view of JEDI architecture.

In JEDI, an event is an ordered set of strings. The first string
is the event name. The remaining strings are event parame-
ters. In the paper, an event will be represented using a nota-
tion similar to function cdls in traditional programming lan-
guages (e.g., open(foo. c, read), where open is the
name of the event, and f 0o.c and read areits parame-
ters). We have thosen this smple event structure for the sake
of flexibility and interoperability. By exploiting the dynamic
binding and type cheding fedures offered by Java we auld
have defined events as Java objeds, thus sgnificantly en-
riching their semantics. However, this choice would have
introduced several constraints on the network-wide avail-
abili ty of the system.

AOs can either subscribe to a spedfic event or to an event
pattern. An event pattern is an ordered set of strings repre-
senting a very simple form of regular expresson. The first
string of the pattern (i.e., the pattern name) may end with an
asterisk, while the other strings are ether standard strings or
strings composed o the single charader * . Given a pattern
p, an event e matches the pattern iff the following conditions

2 We have not used the term “component” sinceit is heavily
overloaded and could have induced some confusion.

www.manaraa.com



hold:

e The name of e is equal to the name of p, if the latter
does not contain the asterisk; or the name of e starts
with the same dcharaders of p name, excluding the &
terisk.

e e and p have the same number of parameters.

[}

e Each parameter of pattern p that is not equa to
equa to the mrresponding parameter of event e.

s
According to our experience, adive objeds often operate
acording to a quite standard segquence of operations. Upon
adivation, the AO subscribes to a set of events and then
starts waiting for their occurrence. When an event is notified,
the AO performs ome operation (passbly generating new
events) and then starts waiting again. It therefore exeautes a
standard loop wait for any event among those it has sub-
scribed to, and then processit. For this reason, we have in-
troduced a particular type of adive objeds cdled reactive
objeds. A readive objed exhibits an abstrad method (caled
processMessage) that has to be spedfied by the pro-
grammer and that is automaticdly invoked ead time the
readive objed receaves an event it has subscribed to. JEDI
provides classes to implement both generic adive objeds and
readive objeds (seenext sedion).

Readive objeds offer also a medchanism to suppart mobili ty.
A readive objed can autonomously dedde to move to a dif-
ferent site by invoking the nove operation, which causes the
following adionsto occur:

1. The state of the readive objed is srialized and saved
using standard Java fadliti es.

2. The readive objed moves to the new location and in-
formsthe ED that it isready to recaéve events.

3. The ED keeps the events that should be receved by the
migrating readive objed until it is realy to receve
them.

There ae two versions of the ED that exploit different im-
plementation strategies: centralized and hierarchicd. In the
centralized approach, the ED is constituted by a single proc-
ess The hierarchicd approach has been introduced to address
the issue of scdability at a network-wide level. In many
critica applicaions (e.g., network management), the number
of AOs is very high and they are typicdly dispersed on a
large number of hosts. Moreover, the number of eventsto be
dispatched beames extremely large. In this context it is vital
to identify means to reduce the event traffic and ogimize the
performance of the distribution mecdhanism. To address this
issue, the hierarchicd ED has been structured as a mlledion
of processes (usualy, one for ead machine running JEDI)
interconneded to form a tree Each AO conneds to anyone
of these processs. Events are propagated aaossthe ED pro-
cesstreeon the basis of the subscriptions posted by each AO.
Notice that AOs behavior is not influenced by the imple-

mentation strategy chosen for the ED. The dedsion of ex-
ploiting the centralized or the hierarchicd version only &-
feds the overall performance of the system. We do not pro-
vide here further detail s on this issue sinceit is not the main
focus of the paper.

In summary, the event-based communicdion style used in
JEDI ischaraderized by the following properties:

e itisasynchronous;
e itisbased on multicast;

* the source of a @mmunication cannot spedfy the desti-
nation of the ommunicdion;

e the destination of a communicaion does not necessarily
know the identity of the source

e events are guaranteed to be recaved in the same se-
gquencein which they are produced;

e areadive objed can move without loosing the occur-
rences of the eventsit has subscribed to.

2.2  Theimplementation of JEDI

JEDI has been implemented as a set of Java dasses and sup-
ports the development of pure event-based applications (i.e.,
applicdions that communicae only by exchanging events).
JEDI includes the event dispatcher and the @mponents
nealed to develop adive and readive objeds. These cmmpo-
nents have to be properly tailored acarding to the spedfic
requirements of the system to be implemented. JEDI includes
two Java packages. Padkage pol i mi . j edi containsal the
clases neeaded to implement adive objeds. Padage
polim.jedi.dispatcher, includes the dasss that
implement the event dispatcher. Figure 2 and Figure 3 de-
scribethe UML logicd design of the two pad<ages.

Eadh adive objed communicaes with the event dispatcher
through the methods offered by the interfaceConnect i on-
ToED shown in Figure 2. This interfaceincludes al the op-
erations nealed to produce events, recave event notifica
tions, subscribe to and unsubscribe from events. The infra-
structure provides two implementations for this interface
through classes RM Connect i onToED and Socket Con-
necti onToED. The former uses RMI to conned to the
event dispatcher (i.e., to implement the relationship con-
nect edTo), while the latter uses dandard TCP/IP sockets.

JEDI provides an abstrad classReact i veQbj ect to im-
plement readive objeds. Users may easily implement new
readive objeds by creding subclasses of Reacti ve(b-
j ect. These subclasses have to provide a suitable imple-
mentation for the estrad method pr ocessMessage.

Figure 3 illustrates the Java dasses used to implement the
event dispaicher (padkage polim.jedi.dispat-
cher). The event dispatcher supparts connedions based
both on RMI and on standard TCP/IP sockets. TCP/IP con-
nedions alow non-Java adive objeds to exploit the feaures

www.manaraa.com



of the JEDI event dispatcher. Classes Event Queue and
Regi st er store the queue of events that have been receved
and not yet dispatched, and the receved event subscriptions
respedively.

<<interface>>
EventDispatcher

(from polimi.jedi.dispatcher)

conngectedTo

*

<<interface>>
ConnectionToED

EventQueue

receivedEvent:

RMIConnectionToED SocketConnectionToED

uses

<<abstract>>
ReactiveObject

Figure 2: Packagem polimi.jedi.

<<interface>>
EventDispatcher

RMIBasedED
1

EventQueue
from polimi.jedi)

 —

0 Q
] —

L 1
Figure 3: Dispatcher (package polimi.jedi.dispatcher).

3 OPSS: ORCHESTRA PSS

ORCHESTRA is a multimedia, distributed infrastructure
offering a range of advanced telecommunicaion feaures [9].
In particular, it allows users to transparently acess grvices
from several types of terminals. It also supparts nomadism:
users can access the ORCHESTRA environment without
being constrained by their physicd locaion. Moreover,
services can be distributed/replicated aaoss the network,
depending on load balancing reeds. OPSS has been con-
caved to suppat the design and operation of business rv-
ices on top d the ORCHESTRA infrastructure. To address
these requirements we dedded to exploit the JEDI event-
based approach. In this sdion we present the main charac
teristics of OPSS and how it has been implemented on top o
JEDI.

3.1 TheArchitecture of OPSS
OPSS main components are a set of agents and a Sate

Server (seeFigure 4).

311 Agents

Agents are aitonomous entities able to recdve an activity
description (i.e., a process model fragment) and execute it.
Activities are spedfied in any language that can be under-
stood ly the agents that execute them. Agents can be dy-
namicdly instantiated during the execution of the process
We use event distribution as the key mechanism to suppart
agent interoperation. Events can be used to notify a variety of
situations, e.g., the start up and the termination of an adivity
or the aedion of anew artifad. The exploitation of the event
mechanism makes it possible to achieve two important re-
sults. First, agents can be dynamicdly and seamlesdy
plugged in and out of OPSS In particular, the aedion or
removal of agents does not affed (at least diredly) other
agents. Seaond, event notification defines a standard interop-
eration mechanism that is independent of the language inter-
preted by the agents.

Activity
Descriptio

SoftwareAgent

State
Server

‘ Event Dispatcher |
Figure 4: The ORCHESTRA Process Support System.

Tool

OPSS offers three kinds of agents. external todls, software
agents, and human agents. External tools are (possbly off-
the-shelf) components that execute business-spedfic adivi-
ties (e.g., a @nfiguration management tod). The adivity
description for an externa tod is just the set of information
needed to launch the tod (e.g., the initial parameters). Exter-
nal todls can be @ther OPSSdedicated o off-the-shelf toadls.
The latter have to be interfacal with OPSS through a gate-
way. JEDI classConnect i onToED supparts the program-
mer in the implementation of tools and gateways. Sdtware
agents are general-purpose interpreters of automated adivi-
ties. In the current implementation of OPSS, adivity de-
scriptions for software gents are cded in Java. They are
defined as sub-classes of ReactiveObj ect. Human
agents are people exeauting credive, human-spedfic adivi-
ties (e.g., a astomer service operator). Human agents are
suppated by an Agenda that show their assgnments and
responsibiliti es in the process Agenda has been explicitly
developed for OPSS and uses RM Connecti onToED
services to send and recave event notificétions.

312 Sate Server

The State Server is in charge of coordinating agents by of-
fering alogicdly centralized view of the state of the process
The state of the processis defined by the entities down in
Figure 5. Eac entity has associated a set of possble states
that define its behavior:

www.manaraa.com



e Agent I nfo. Thisclassis used to store information on
process agents. The modeled agents' states are Avai | -
abl e and Not Avai | abl e. In the first state the agent
can be requested to exeaute an adivity.

e Activitylnfo. Thisclassis used to maintain infor-
mation on the adivities of the process An adivity can
be in one of the following states. Defi ned, As-
si gned, OnCoi ng, Suspended, Term nated,
Abor t ed. These states will be presented more in detail
later on.

e Artifactlnfo. This class defines the information
concerning the outcomes of the process The possble
states are Created, OnEdit, Edited, and De-
stroyed.

* Resourcel nf o. This class contains data on the toadls
that can be invoked or used by OPSS(e.g., the executa
ble mde of the Java interpreter or of an externa tod,
devices such as a printer or an audio device). The poss-
ble statesare Avai | abl e and Not Avai | abl e.

These antities are subclasses of ProcessEl ement (see
Figure 5). In turn, Pr ocessEl enent is asubclass of Re-
act i veObj ect . As a mnsequence, ead instance of these
subclasses has an autonomous thread of exeaution that reads
to JEDI events.

<<interface>>

StateServerRMI

ReactiveObject

T
1.1

N
>

1.1

StateServerRMI_Impl L1 0.* ProcessElement Artifactinf

=
E
S
)
o
3

Creates/
modifies,

IsExecutedBy

}—{umanAgentlnl%; ‘SnnwareAgemlnﬂo
[ 1 [ 1
L ] L ]

Figure5: StateServer structure.

Eadh entity reads to events acording to a finite state ma-
chine, defined at the dass level, cdled life cyde. It defines
the set of admissible transitions between states. A transition
is defined by atriple: triggering event, condition, and adion.
With this resped, transitions are similar to ECA rules in ac
tive databases [6]. When an entity recaves an event notifica
tion Ej in state §, al the transitions having § asinitial state
and E; astriggering event are evaluated for firing. One of the
transitions whose @ndition evaluates to true is nor-
deterministicdly fired. The firing of the transition causes the

exeadution of the adion part and moves the instance to the
final state. The execution of the adion part of a state trans-
tion can produce new events that may influence the exeau-
tion of adivity descriptions and the state of other objeds in

the State Server.
StartActivity

AssignAgent

Terminated Aborted

Figure 6: The Activity life cycle.

As an example, Figure 6 shows the life cycle associated with
classActi vi tyl nf o. When an objed of this classis cre-
ated, it is in state Def i ned. In this date the objed is char-
aderized by a unique identifier and by an adivity descrip-
tion. From state Def i ned the objed can move to state As-

si gned when the mrresponding adivity description has
been asdgned to an agent for execution (i.e., event Assi g-

nAgent (activityl D, agentlD) is recéved). The
transition can only be executed if the instance of class
Agent | nf o that corresponds to the seleded agent (agen-

t1 D) isin state Avai | abl e. Upon transition execution, the
Act i vi t yl nf o instance moves into state Assi gned, the
Agent | nf o instance moves into state Not Avai | abl e,
and the event Agent Assi gned(activityl D, agen-

t 1 D) isproduced. Agendas usualy subscribe to these types
of events to provide human agents with information about
their assignments. When the Acti vi t yl nf o instance re-
cadvesevent Start Activity(activityl D), it moves
from state Assi gned to state OnCGoi ng, provided that all

the adivities precaling adivity acti vityl D have been
terminated. When exeauting the adion part of this transition,
the Acti vi t yl nf o instance produces the event Acti v-

ityStarted(activityl D, AD URL). This event is
subscribed by the agent asdgned to adivity acti vityl D
or, if she is a human agent, by her Agenda, and triggers the
exeadtion of the adivity. Parameter AD- URL contains the
location of the adivity description to be executed.

The State Server main class is St at eServer RM _I npl .
It defines the inherited method pr ocessMessage to read

www.manaraa.com



to events like: login of users and creaion of new adivities,
artifads, or resources. The dynamic behavior of the State
Server isvery smple: it subscribes to and waits for the éove
events. When one of such events ocaurs (e.g., a new adivity
needsto be started), the State Server creaes an objed able to
describe the state of the crresponding entity in the process
(i.e., the new adivity) and to keep tradk of its evolution.
Therefore, a any time, the information stored in the State
Server mirror the state of the processheing exeauted.

Beside this event-based interface the State Server exports a
set of services through which any Java component can query
the state of the running process(i.e., of the instances of these
subclasses). These services constitute asynchronous interac
tion mechanism that is not diredly supparted by JEDI. The
motivation of this choice is discused later on in Sedion
“Evaluation”.

4 EVALUATION

The development of OPSS has demonstrated that the main
advantage of the event-based paradigm supparted by JEDI is
the eay re-configurability of the system. For instance, we
have recently integrated a process monitor in OPSS without
affecting the behavior of the other parts of the system. The
process monitor simply subscribes to the events that repre-
sent a change of the process sate and visudizes it acord-
ingly. However, our experience has also identified some
problems and open issues, as we will briefly discuss hered-
ter.

4.1  Synchronousvs. asynchronous communication

In JEDI, adive objeds communicae using a pure event-
based style. Namely, the only mean for an adive objed to
send (receve) an information is to generate (recave) an
event. Events are sent and recaved in an asynchronous way.
We have noticed that in many situations an adive objed,
after generating an event, needs ome resporse from the re-
cipient(s) of the event in order to perform the next operation.
For instance, consider the aase in which an agent needs to
notify the State Server that a new adivity has to be aeaed
and that this adivity has to be assgned to a cetain agent.
The ayent executes the foll owing code fragment:

sendEvent (" DefineActivity(ActlD, Act Type)");
sendEvent (" Assi gnAgent (Act I D, Agent I D)");

The exeaution of this code might be aroneous becaise of
possble race onditions. For instance, the State Server, that
reads to event Def i neAct i vi ty, might be unable to cre-
ate the arresponding Acti vityl nfo objed before the
event Assi gnAgent has been produced. As a result, this
last event would be lost since the Acti vityl nf o objed
would be late in subscribing to it. In this case the State
Server would not be ale to properly keep track of the agent
assgnment.

To avoid this stuation, it is convenient that the agent re-
caves the confirmation of the aedion of the Acti vity-

I nf o objed before generating the next event. In JEDI, this
behavior can be obtained by programming the event redpient
to produce a event that ads as a “response” to the initial
event. This way, the source of the initial event can explicitly
subscribe to this event and wait for the event occurrence be-
fore producing the Assi gnAgent event. This lution is
quite aumbersome and expensive, since it requires the -
change of a high number of messges between the event
source, the redpient(s), and the event dispatcher.

An alternative solution would be to explicitly define in JEDI
the wncept of “return value”, from the event redpient(s)
badck to the agent that has generated the event, and to provide
the programmers with mecdhanisms to easily manage these
values. In particular, we ae introducing an additional syn-
chronous operation for event generation that requires a “re-
turn value” from the redpient(s) of the event. The exeaution
of this operation alows an adive objed to send an event to
the dispatcher and wait until some information is returned
from the event redpient(s) or, if no ohjed isinterested in the
event, from the event dispatcher. When the event has muilti-
ple redpients, severa pdlicies can be ewisaged to manage
the return values. For instance, the source can wait for the
first return value, or it can wait until al the redpients have
provided a response. In this latter case the event dispatcher
should inform the source of the number of return values that
it should recave.

Notice that this additional synchronous mechanism still pre-
serves the aonymity of the redpient(s) of the event, since
the exchange of return value can be still managed by the
event dispatcher. More in general, it preserves the basic s
mantics of events (multicast dispatching, and anonymity of
both source and redpients), ill introducing a significant
amount of flexibility and ogimization in the management of
complex agent interadion patterns.

42  Event granularity

We have experienced asignificant problem in identifying the
events to be exchanged among agents. If the granularity of
events is very low, many events have to be generated, since
eat of them has a poa or limited meaning. This choice
might significantly complicate the programming adivity,
reduce the performance of the system, and make it difficult
to test and monitor the system. On the other side, a too
course-grained definition of events might hide inside agents
significant operations that must be made visible to the rest of
the system. For instance, consider the example presented in
the previous dion. In that case, the events Cr eat eAc-

tivity and Assi gnAgent (that gave us ®veral synchro-
nizaion troubles) could have been replacel by a unique
event carrying the information about both the credion of the
adivity and its assignment to the spedfied agent. This design
choice reduces the number of exchanged events but modifies
the semantics of adivities: any activity can be aeaed only if
aproper exeauting agent has been arealy seleded.

www.manaraa.com



There is no universal solution to this problem. It is the de-
signer’ s responsibility to evaluate the trade-off and seled the
most suitable solution, based on the cnstraints and require-
ments of the problem being addressed.

4.3 Client server vs. event-based design paradigms

The main problem a programmer encounters using a pure
event-based approach is that the programming phil osophy
differs from the traditional client-server approach that she is
used to. In a dient-server approach interadion between com-
ponents occurs when one cmponent is not able to perform
some operation and asks the other one to doit on its behalf.
In an event-based approach, components are aitonomous
entiti es that inform the “external world” of the main changes
occurred in their internal state or in the state of the compo-
nents and devices they can observe. The notificaion of an
event is sen by a ammponent as an external stimulus that can
determine achange in its internal state. Thus, collaboration
among componentsisindired.

Based on this consideration, a main step in understanding
both architecural paradigms ould be the identification of
the dasses of systems that better suit ead approach. Since
they address different requirements, we might discover that
event-based and client-server approaches are not aternative.
Instead, they can be profitably integrated even in the same
system. In OPSS we have tried to use the event-based ap-
proach to guarantee autonomy of process agents and re-
configuration of the system. Moreover, we exploited the di-
ent-server approach to query the global state of the process
maintained by the State Server. We ae aware, however, that
amore systematic study is needed.

4.4  Open issues:. network-wide event distribution and
mobility

The development of OPSS has emphasized the neal for
powerful and efficient mechanisms to suppart the notifica:
tion and distribution of events on a network-wide scde (e.g.,
on the Internet). The erent-based infrastructure must guar-
antee that the services implemented on top o it are made
avail able to users dispersed over the Internet. The hierarchi-
cd ED we implemented may represent an initial solution to
the problem. However, there ae still a number of issuesto be
addres=d. In particular, a distributed ED provides an overall
performance improvement only if the number of messages
exchanged for ead delivered event aadoss the ED compo-
nents is "reasonable”. According to our current experience,
severa aspeds have an impad on this issue, such as the to-
pology of the mnnedions of ED components, and the ex-
pressve power provided by the subscription mechanism.
Colleagues at the University of Colorado at Boulder and UC
Irvine ae aldressng this issue by defining and asessng
new architectures for distributed EDs.

We ague that mobility of readive objeds as it is supparted
by JEDI represents a powerful mechanism for implementing
sophisticaed applications. However, it may introduce several

problems when combined with ED distribution. The ED has
to provide spedfic mechanisms to guarantee that moving
objeds do not receve duplicaed events and that the original
ordering of eventsis respeded. We provided a spedfic solu-
tion for our hierarchicd ED, but the impad of this issue on
aternative ED architeduresiis gill to be understood Finaly,
we still 1 ack an extensive experimentation of this mechanism
sinceit was not exploited in the OPSSimplementation.

5 RELATED WORK

This sdion surveys event-based infrastructures and com-
pares them with JEDI. Also, it shows the impad that the
adoption of an event-based approach had on OPSS by com-
paring our system with similar state-of-the-art PSSs.

51 Event-based infrastructures and frameworks

In the past yeas there has been a growing interest in distrib-
uted software achitedures cgpable of easily supparting dy-
namic system reoonfiguration. The event-based paradigm
provides a very promising solution to the problem. It bregks
the tight connedion between clients and servers, eliminating
the neel for clients to know the identity of servers. Several
examples of event-based systems may be found in literature.
They differ in the structure of the events that can be dis-
patched, the way events are observed, the mechanisms for
event subscription, and their overal run-time achitecure
(see[13] for a detailed charaderization of these aspeds). In
general, the products and approaches we mention in this ¢
tion do not suppat the mohility of the software components
exchanging events.

Multicast RPC [3, 18, 19] (aso known as group RPC) allows
a dient to invoke aservice on a group of servers which ex-
ports the same interface Servers “register” to a dassof mes-
sages (service requests) by joining a group and by exporting
the common interface defined for the group. This is quite
different from the gproach taken by JEDI. In JEDI event
consumers use a more powerful dedarative gproac to
“register” to a dassof messages and they do not neel to ex-
port any common interface Moreover, multicast RPC is a
synchronous communication mechanism in which an answer
is required, while JEDI implements an asynchronous com-
municaion mechanism without answer. From this viewpoint,
multicast RPC is complementary to the JEDI approad, and
could be similar to the synchronous mechanism we alvo-
cded in Sedion Evaluation.

Linda [5] is the preaursor of a generation of languages aim-
ing at describing and supparting cooperative computations.
The basic ideais that different autonomous computations can
cooperate by realing and writing information through a
shared repository (or space) of information tuples. Each
Linda program can read a tuple from the repasitory on the
basis of its contents, using a pattern matching mechanism. A
read operation does not remove the tuple from the repository.
Linda offers also a consume operation that reads the tuple
and remove it from repaository. There ae severa differencies

www.manaraa.com



between Linda and JEDI (and, in general, the event-based
paradigm). First, JEDI makes it possble to “dedare”,
through the subscribe operation, the dassof events which an
applicaion isinterested in. As a mnseguence, the gplicaion
will recave dl the events that conform with the subscribe
dedaration. It does not need to explicitly request them fur-
ther. Events are distributed by the ED to the gplicaion as
they are produced and asynchronoudy with resped to the
main control flow of the gplicaion. Conversely, in Linda
eat read/consume operation is independent of each other
and is synchronously executed by the Linda program. Sec
ond, JEDI (as any other true event-based approach) guaran-
tees that all the parties that have dedared their interest in an
event will eventually recaveit. Thisis enforced by the JEDI
run-time suppart based on subscription requests. In Linda the
only way to achieve asimilar effed isto work at the gplica
tion level. For instance, before removing the tuple, a Linda
program might check for some global information to be sure
that all the other interested parties have drealy real it. An-
other possbility is that ead event producer writes multiple
copies of atuple, one for ead interested party. This means
that the producer must know the number of interested parties.
In both cases, the mrredness of the event distribution se-
manticsis left to the programmer’ s respongbility.

Event-based systems can be mnsidered as an evolution of a
well-established classof products often cdled MOMs (Mes-
sage-Oriented Middleware) [11]. In MOMs, explicit message
gueues are used to distribute messages. They guarantee de-
livery of messages and locdion transparency. In severd
MOMs, there @an be multiple consumers for the same mes-
sage queue. A queue is therefore similar to a Linda tuple
space We ague that MOMs exhibit the same problem of
Linda Infad, evenif aMOM made it possble to just “read’
a message from the queue without removingit, this would be
adedsion left to the consumer. It can’'t be guaranteed that the
event is delivered to al the interested parties.

Tooltalk [14] is a product derived from FIELD [12] that was
originaly conceved to suppat tod integration in software
engineaing environment through a message exchange fadl -
ity. Tods can subscribe to events, send events, and receve
the events they have subscribed to. Events in Todltalk can
either be aynchronous or synchronous (they are cdled noti-
ficaions and requests respedively). In the latter case, the
redpients are suppacsed to provide the source with a return
value. This approac is smilar to the one we ae developing
for JEDI (see Sedion Synchronous vs. asynchronous com-
municaion). The publish/subscribe semantics implemented
by TodTalk is typicdly oriented to suppart tod integration
in a CASE environment and is insufficient in other applica-
tion domain. In particular, Todltalk offers two event visibility
levels: session and file. A sesson is defined as the set of all
todls srved by the same Todltalk server. Usually, ead user
launches one or more Tooltalk servers, ead of them control-
ling a separate group o tods. A program can subscribe to all
the messages belonging to a sesson and/or related to a file.

This mechanism makes it impaossible awide gplication of
the gproach. For instance it is not possble to develop a
monitor toal that subscribes to the eventsrelated to al files.

The CORBA event service[10] defines two roles for system
components. event suppier and event consumer. They are
described by two different IDL interfaces that provide meth-
ods to exchange events between event suppliers and consum-
ers. The structure of a CORBA event is hidden to the event
service Events are distributed from suppliers to consumers
through event chanrels. An event channel allows multiple
suppliers to communicae with multiple consumers asyn-
chronously. An event-based system may include severa
event channels. A component of the system (either supplier
or consumer) may be mnneded to severa event channels.

The CORBA event service differs from JEDI significantly.
A CORBA event is distributed on the basis of just one (im-
plicit) attribute: the name of the event channel where the
event was originally posted. The event will be dispatched to
al the mnsumers attached to that channel. The ntents of
the event is “not visible” to the event channel, and is not used
to manage the distribution of the event. Conversely, a JEDI
event is composed o a set of attributes. Producers do not see
different channels. They simple post these structured events
to the ED. Consumers can flexibly subscribe with a single
“dedarative” operation to a dass of events that is dynami-
cdly defined using event patterns. Consequently, the expres-
sive power of JEDI is higher than CORBA. CORBA event
channels can be eaily simulated using JEDI event names,
whileit is quite cumbersome and inefficient to simulate JEDI
patternsin CORBA. It is indeed necessary to write aspedfic
code that in general will need to pdl different CORBA event
channels. In generd, if the JEDI pattern includes a seledion
criterion that involves event attributes other than the event
name, the euivaent CORBA consumer must be “pro-
grammed” to perform the seledion of desired events based
on the analysis of the event contents. This means that while
the JEDI ED can avoid dispatching events that do not match
the seledion criterion, the equivalent CORBA consumer re-
cdves and discards a number of undesired events, with an
increase of the event traffic.

TIBCO isaninfrastructure for creaing and maintaining large
distributed and event-based applications [17]. It has been
used over the past yeas to integrate financial and banking
applicdions (espedaly, trading services for financial mar-
kets). It offers svera interesting feaures including reliable
and scdable distribution of events. It exploits a three-level
hierarchicd event dispatcher. From the available documenta-
tion it seems that TIBCO offers an event structure that is
similar to the one offered by CORBA, i.e., alabeling medha-
nism to assign names to events. Therefore it seems it lacks
the ability of defining event patternsasin JEDI.

C2 is an event-based architedura style that has been de-
signed to suppart the development of GUI software [16]. In
C2 muilti ple software mmponents can communicate through

www.manaraa.com



connedors that manage the routing and broadcasting of
events. Components and connedors form a DAG (Dired
Acyclic Graph). In this DAG, ead component can commu-
nicate only with the two connedors “below” or “above” it.
Events are dasdfied as notificaions and requests, depending
on the fad that they travel down or up in the DAG, respec
tively. There ae several diff erences between C2 and JEDI. In
C2 the component developer does not have any event defini-
tion and generation primitive. Actually, C2 notificaions are
messages automaticdly sent out by the C2 run-time suppart
to notify the execution of a mwmponent method invocation. It
is not posgble for the component developer to define and
generate events with a different semantics. Moreover, C2
requests (i.e., synchronous communicdions) are not anony-
mous and are not multicasted. In JEDI, we do propose the
introduction of a synchronous mechanism (the return re-
capt), but we preserve the anonymity of senders and recev-
ers and the possbility of multicasting the event.

Yeast main component is a centralized server that observes
event sequences and reads to their occurrence acording to
some adion spedficaion [8]. Users can add new event-
adion spedficaions while Yeast is running. Events can be
either operating system events (e.g., file dhanges) or mes-
sages produced by the comporents of the system. Events can
be combined in a sequence using some logicd and temporal
operators. Actions can include aty command that can be
exeauted by the cmputer command interpreter. Yeast and
JEDI are quite different and complementary. The former
does not offer any event dispatching functionality, but pro-
vides phisticated mechanisms for defining, observing event
sequences, and reading to their occurrence Thus, Yeast
functionality can be eaily implemented on top d JEDI as a
proper adive objed.

52 PSSs

It is worthwhil e to compare OPSSwith the state-of the-art in
PSS, to better appredate the impad that the aoption of
JEDI has had on its development and on its range of fedures
and functionalities.

A first relevant system is ProcessNall [7]. It is a process
state server providing storage for process sate, and opera
tions for defining and manipulating the structure of the state.
The gplications that adually execute the processoperate &
ProcesaWVall clients. They execute the process adivities and
invoke the Proces3Nall operations to modify the state of the
processin order to refled the result of their processng. An
event dispatching system is used to notify the interested cli-
ents of changes occurred in the state of the process Proc-
esaVall is smilar to the OPSS Sate Server. The main differ-
ence is that ProcesdVall uses the event-based communica
tion model only to notify state dhanges to its clients. The
clients communicate with ProcesdVall via RPC. Conversely,
the OPSS Sate Server suppats both RPC and event-based
interaction.

Another PSSthat presents charaderistics similar to OPSSis
Endevours [4]. It has been developed to suppart distribution
of process exeaution, lightweight instalation and re-
configuration, and easy integration of components executing
process fragments with tools and hyperwebs of artifads. Its
architedure is compaosed of threemain levels: the user levé,
that is in charge of managing the interadion with users, the
system leve that defines the main process abstradions (e.g.,
adivities, artifads, ...), and the foundaion leve that man-
ages objed persistency and dstribution. Both Endevours and
OPSS provide adecantralized exeaution of processes, i.e.,
they exploit multiple processengines. The main differenceis
that Endevours does not rely on the event-based approach to
coordinate the interadion of different engines: they interad
by sharing the atifads and information stored in a passve
repaository.

The definition of the information stored in the OPSS Sate
Server has been inspired by the work presented in [1]. In that
paper a CORBA-based PSSis described. It is conneded to
other toadls through the CORBA ORB. The PSS manages
adivities, artifads, resources, and agents. They are &di-
ated with a life cycle. A state transition defined in the life
cycle of an objed is exeauted if the crresponding event oc-
curs. From the available publicdions, we have been unable
to understand the mechanisms used at run-time to manage
event credion and notificaion. Therefore, it has been impos-
sible to cary out a detailed comparison of the achitectures
of the two approaches.

6 CONCLUSION

In this paper we have illustrated the main feaures of JEDI,
an event-based infrastructure for the devel opment of complex
distributed systems. JEDI exploits the notion of event and
standard Internet technology to provide the software devel-
oper with a programming framework where multiple adive
objeds cooperate by generating and consuming events. JEDI
has been used to implement a significant example of distrib-
uted system, namely the OPSS Process Suppat System.
JEDI offers a simple set of medhanisms to creae multiple
adive objeds that interoperate by exchanging events. The
entire achitedure is based on very ssmple and arthogonal
concepts. Events are asynchronoudly distributed to subscrib-
ers. All the operations related to event subscription and event
notification are managed in a highly dynamic and flexible
way. OPSSis a significant example of distributed system
whose development has grealy benefited from the availabil -
ity of an event-based infrastructure. By exploiting JEDI fea
tures, OPSScan offer an extremely flexible and dynamicdly
changeable suppart for workflow management.

The main lessons we have leaned from the work described
in this paper indicae that the esent-based approach certainly
offers sgnificant advantages over traditional RPC and con-
ventional message-based communication techniques. These
advantages are dso demonstrated by the growing interest in
this technology that has been demonstrated by both academia

www.manaraa.com



and industry. Nevertheless a number of technological issues
concerning event-based architedures have to be explored. In
this resped, we ague that the most critical issue to be al-
dressd is the identificaion of appropriate design and im-
plementation strategies that make it posgble to integrate dif-
ferent (and sometime nflicting) feaures sich as Internet-
wide scdability, enhanced event model (eg., obed-
oriented), synchronous and asynchronous event handling
mechanisms, event filtering. Moreover, we still miss effec
tive methoddogicd guidelines to guide and suppart the de-
sign of event-based systems. We plan to further investigate
these issues since they are aitica impediments to the effec
tive exploitation of the event-based architecural style.

ACKNOWLEDGEMENTS

Authors wishes to thank Antonio Carzaniga, Carlo Ghez4,
Dennis Heimbigner, David Rosemblum, and Alex Wolf for
their important contribution to the acomplishment of the
work described in this paper. They wish also to thank S.
Beretta, C. Colombo, S. Montaruli, S. Sargenti, and F.
Vadalawho provided an esential suppart in the devel opment
and implementation of JEDI and OPSS

OPSSdevelopment has been funded by Telecom Italia under
a ontrad managed by Armando Limongiello. The views and
the @nclusions contained in this document are those of the
authors and should not be interpreted as representing the of-
ficial pdlicies, either expressed or implied, of Telecom Italia.

REFERENCES

1. K. Alho, C. Lassenius, and R.Sulonen, “Process Enad-
ment Suppart in a Distributed Environment”, WET ICE
'95, IEEE Fourth Workshop an Enabling Tedhnologies:
Infrastructure for Collaborative Enterprises, Berkeley
Springs, West Virginia, April 20-22, 1995.

2. V. Ambriola, R. Conradi, and A. Fuggetta. “Assessing
ProcessCentered Environments’, ACM Transactions on
Sdtware Engineeing and Methodology, vol. 6, no. 3,
July 1997

3. K. P.Birman and T. A. Joseph, “Reliable Communica
tion in Presence of Failures’, ACM Transactions on
Computer Systems, 5(1), February 1987.

4. G.A. Bolcer and R.N. Taylor, “Endevours. A Process
System Integration Infrastructure”, IRUS Conference on
Software Process Improvement, Pradice axd Experi-
ence January 24, 1997, Irvine, CA.

5. N. Carriero and D. Gelernter, “Linda in Context”, Com-
munication of ACM, 32, 4, April 1989.

6. P. Fraternali and L. Tanca “A structured approach for
the definition of the semantics of the adive databases,
ACM Transactions on Database Systems, 19%.

7. D. Heimbigrer, “The ProcesdVall: A Process Server
Approach  to  Process  Programming”, Fifth

10.

11

12

13.

14.

15.

16.

17.

18.

19.

ACM/SIGSOFT Conference on Software Development
Environments, 9-11 December 1992 Washington, D.C.

B. Krishnamurthy and D.S. Rosemblum, “Y east: A Gen-
eral Purpose Event-Action System”, |EEE Transactions
on Sdtware Engineaing, vol. 21, no. 10, October 1995.

A. Limongidllo, R. Melen, M. Roccuzzo, V. Treoordi, J.
Wojtowicz, “An Experimental Open Architedure to
Suppat Multimedia Services Based on CORBA, Java
and WWW Tedologies’, IS&N '97, Cernobhbo
(Como), Italy, 27-29 May 1997.

Objed Management Group, “CORBAservices. Common
Objed  Services  Spedficaion’, July 1997
ftp://ftp.omg.org/pub/docs/formal/97-07-04.pdf

OVUM, “OVUM Evaluates: Middleware”, OVUM Ltd,
1996

S.P. Reiss “Conneding Tods Using Message Pasgngin
the Field Environment”, IEEE Sdtware, July 199Q

D.S. Rosenblum and A.L. Wolf, “A Design Framework
for Internet-Scde Event Observation and Notificaion”,
6th European Software Engineaing Conference (Joint
with SIGSOFT '98, Foundations of Software Engineea-
ing), Zurich, Switzerland, September 1997, to appea.

Sun Microsystems, “Integrating applications with the
SPARCworks 3.0.1 toolset.
http://www.sun.com/software/Products/Devel oper-
products/literature/int_tool/prefacehtml

Sun Microsystems, “Java Remote Method Invocation
Spedficdion”, February 10, 1997,
ftp://ftp.javasoft.com/docs/jdk1.1/rmi-spec.pdf

RNN. Taylor, N. Medvidovic, K.M. Anderson,
E.JWhitehead Jr., J.E. Robhins, K.A. Nies, P. Oreizy,
and D.L. Dubrow. A component-based architecural
style for GUI software, IEEE Transactions on Sdtware
Engineeing, vol. 22, no. 6, June 1996.

TIBCO Enterprise Toolkit White
http://www.tibco.com/products/etkwhite.hml

K. S. Yap, P. Tripathi, and S. Tripathi, “Fault Tolerant
Remote Procedure Call”, Procealings of 8" Interna-
tiond Conference on Distributed Computing System,
June 1988

X. Wang, H. Zhao, and J. Zhu, “GRPC: A Communica
tion Cooperation Medchanism in Distributed Systems’,
ACM Operating System Review, 27(3), 1993.

Paper.

www.manaraa.com



